切换至 "中华医学电子期刊资源库"

中华胃食管反流病电子杂志 ›› 2024, Vol. 11 ›› Issue (04) : 212 -216. doi: 10.3877/cma.j.issn.1672-6448.2024.04.007

综述

食管鳞状细胞癌致病机制研究进展
王坤宁1, 尤旭颖1, 张岱泽1, 景燕燕1, 张月林1, 袁红霞2,()   
  1. 1. 301617 天津中医药大学研究生院
    2. 301617 天津中医药大学中医学院
  • 收稿日期:2024-06-10 出版日期:2024-11-15
  • 通信作者: 袁红霞
  • 基金资助:
    袁红霞天津市名中医传承工作室建设项目(津中卫[2022]303号)天津市科学局多元投入基金项目重点项目(21JCZDJC01150)天津市教委社会科学重大项目(2021JWZD23)天津市研究生科研创新项目(YJSKC-20221008)天津中医药大学研究生科研创新项目(YJSKC-20221019)

Research progress on the pathogenesis of esophageal squamous cell carcinoma

Kunning Wang1, Xuying You1, Daize Zhang1, Yanyan Jing1, Yuelin Zhang1, Hongxia Yuan2,()   

  1. 1. Department of Graduate School,Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    2. chool of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
  • Received:2024-06-10 Published:2024-11-15
  • Corresponding author: Hongxia Yuan
引用本文:

王坤宁, 尤旭颖, 张岱泽, 景燕燕, 张月林, 袁红霞. 食管鳞状细胞癌致病机制研究进展[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(04): 212-216.

Kunning Wang, Xuying You, Daize Zhang, Yanyan Jing, Yuelin Zhang, Hongxia Yuan. Research progress on the pathogenesis of esophageal squamous cell carcinoma[J/OL]. Chinese Journal of Gastroesophageal Reflux Disease(Electronic Edition), 2024, 11(04): 212-216.

食管癌是一种常见的上消化道恶性肿瘤,在亚洲国家,超过90%的食管癌病理表现为食管鳞状细胞癌(ESCC)。目前尽管ESCC的诊断技术和综合管理方法取得了较大进展,但ESCC的总体5年生存率仍不尽如人意。现阶段,ESCC发病和进展的具体机制仍未明确,诸多研究多从氧化应激、线粒体、铁死亡、慢性炎症等角度对其致病机制进行阐释。

Esophageal cancer is a common malignant tumor of the upper gastrointestinal tract,and in Asian countries, over 90% of esophageal cancer pathological manifestations are esophageal squamous cell carcinoma ESCC. Although significant progress has been made in the diagnostic technology and comprehensive management methods of ESCC, the overall 5-year survival rate of ESCC is still not satisfactory. At present, the specific mechanism of the onset and progression of ESCC is still unclear,and many studies have explained its pathogenic mechanism from the perspectives of oxidative stress,mitochondria, iron death, chronic inflammation, etc.

1
Iqbal MJ, Kabeer A, Abbas Z, et al. Interplay of oxidative stress,cellular communication and signaling pathways in cancer[J]. Cell Commun Signal, 2024, 22(1): 7.
2
刘振宇,黄秀婷,田晓娟,等. Wnt/β-Catenin信号通路对氧化应激损伤促进食管癌细胞凋亡的调控研究[J]. 广州医科大学学报,2019, 47(5): 1-4.
3
邓国栋. 氧化应激调控相关CUL3-KEAP1-NRF2轴在食管鳞癌中的作用及分子机制研究[D]. 北京: 北京协和医学院, 2021.
4
Ždralević M, Brand A, Di Ianni L, et al. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism[J]. J Biol Chem, 2018, 293(41): 15947-15961.
5
Wang X, Liu R, Zhu W, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis[J]. Nature, 2019, 571(7763):127-131.
6
DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect[J]. Nat Metab, 2020, 2(2): 127-129.
7
Martínez-Reyes I, Cardona LR, Kong H, et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth[J]. Nature, 2020, 585(7824):288-292.
8
Gong W, Xu J, Wang Y, et al. Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma[J]. Signal Transduct Target Ther, 2022, 7(1): 40.
9
Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC[J]. Nature, 1999, 399(6735): 483-487.
10
Perciavalle RM, Stewart DP, Koss B, et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration[J]. Nat Cell Biol, 2012, 14(6): 575-583.
11
Wuilleme-Toumi S, Robillard N, Gomez P, et al. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival[J]. Leukemia, 2005, 19(7): 1248-1252.
12
Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers[J]. Nature, 2010,463(7283): 899-905.
13
Andersen JL, Kornbluth S. Mcl-1 rescues a glitch in the matrix[J]. Nat Cell Biol, 2012, 14(6): 563-565.
14
Christofferson DE, Yuan J. Necroptosis as an alternative form of programmed cell death[J]. Curr Opin Cell Biol, 2010, 22(2): 263-268.
15
Sullivan LB, Gui DY, Vander Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy[J]. Nat Rev Cancer, 2016, 16(11): 680-693.
16
Dong CK, Masutomi K, Hahn WC. Telomerase: regulation, function and transformation[J]. Crit Rev Oncol Hematol, 2005, 54(2): 85-93.
17
Singhapol C, Pal D, Czapiewski R, et al. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis[J].PLoS One, 2013, 8(1): e52989.
18
Miwa S, Saretzki G. Telomerase and mTOR in the brain: the mitochondria connection[J]. Neural Regen Res, 2017, 12(3): 358-361.
19
Bernardini JP, Lazarou M, Dewson G. Parkin and mitophagy in cancer[J]. Oncogene, 2017, 36(10): 1315-1327.
20
O'Flanagan CH, O'Neill C. PINK1 signalling in cancer biology[J].Biochim Biophys Acta, 2014, 1846(2): 590-598.
21
Zhang H, Gao P, Fukuda R, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity[J]. Cancer Cell, 2007,11(5): 407-420.
22
Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation[J].Cell. 2010, 141(4): 656-667.
23
Yan C, Li TS. Dual role of mitophagy in cancer drug resistance[J].Anticancer Res, 2018, 38(2): 617-621.
24
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an irondependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
25
Dixon SJ. Ferroptosis: bug or feature?[J]. Immunol Rev, 2017, 277(1):150-157.
26
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation[J].Trends Cell Biol, 2016, 26(3): 165-176.
27
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol,2017, 13(1): 91-98.
28
Yang WH, Huang Z, Wu J, et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer[J]. Mol Cancer Res, 2020, 18(1): 79-90.
29
Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296.
30
Jiang B, Zhao Y, Shi M, et al. DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma[J]. Dig Dis Sci, 2020, 65(7):1999-2008.
31
Zhang J, Wang N, Zhou Y, et al. Oridonin induces ferroptosis by inhibiting gamma-glutamyl cycle in TE1 cells[J]. Phytother Res, 2021,35(1): 494-503.
32
Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids[J]. Lipids, 1995, 30(4): 277-290.
33
Cao JY, Dixon SJ. Mechanisms of ferroptosis[J]. Cell Mol Life Sci,2016, 73(11-12): 2195-2209.
34
Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J].Proc Natl Acad Sci USA, 2016, 113(34): E4966-E4975.
35
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90.
36
Shah R, Shchepinov MS, Pratt DA. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis[J]. ACS Cent Sci, 2018, 4(3): 387-396.
37
Bai CY, Zhang JY, Shi TW, et al. Association between 5-lipoxygenase expression, and malignant behaviors and poor prognosis in esophageal squamous cell carcinoma[J]. Oncol Lett, 2018, 15(6): 9353-9360.
38
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331.
39
Eaton JK, Furst L, Ruberto RA, et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles[J]. Nat Chem Biol,2020, 16(5): 497-506.
40
Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503.
41
Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698.
42
Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019,575(7784): 688-692.
43
Hadian K. Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q cooperatively suppress ferroptosis[J]. Biochemistry, 2020, 59(5):637-638.
44
Dai E, Meng L, Kang R, et al. ESCRT-III-dependent membrane repair blocks ferroptosis[J]. Biochem Biophys Res Commun, 2020, 522(2):415-421.
45
Dai E, Zhang W, Cong D, et al. AIFM2 blocks ferroptosis independent of ubiquinol metabolism[J]. Biochem Biophys Res Commun, 2020,523(4): 966-971.
[1] 周圆圆, 周怡, 段亚阳, 张怡卿, 朱峰宇, 张超学. 低强度超声缓解顺铂所致小鼠卵巢损伤的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1132-1141.
[2] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[3] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[4] 黄凤, 李文润, 冉永红, 谌莉, 刘泓伽, 王秋池, 郝玉徽. 贫铀对线粒体损伤影响的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 179-183.
[5] 王馨悦, 王卓然, 古丽莎. 氧化纳米铈促进氧化应激状态下口腔骨缺损修复的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 62-69.
[6] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[7] 汪艳, 孙美玲, 闵凌峰. 基于TCGA 数据库肺腺癌铁死亡相关基因CA9 的鉴定[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 888-894.
[8] 吕园园, 高辰旸, 徐永君. 纳米金棒对A549 细胞的毒性效应及其对自噬的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 20-29.
[9] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[10] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[11] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 冯铭, 孙洪涛. 动脉瘤性蛛网膜下腔出血的颅内压监测与管理[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 248-253.
[14] 陈俊, 涂鄂文, 王照. 线粒体DNA 多重缺失所致线粒体脑肌病的诊断学特征并文献复习[J/OL]. 中华诊断学电子杂志, 2025, 13(01): 59-64.
[15] 江倩, 王红蕊, 朱玥荃, 李响, 耿晓坤, 李凤武. 药物诱导亚低温对缺血性脑卒中的神经保护作用及DRP-1 调控线粒体功能在其中的潜在分子机制[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 586-594.
阅读次数
全文


摘要