1 |
Iqbal MJ, Kabeer A, Abbas Z, et al. Interplay of oxidative stress,cellular communication and signaling pathways in cancer[J]. Cell Commun Signal, 2024, 22(1): 7.
|
2 |
刘振宇,黄秀婷,田晓娟,等. Wnt/β-Catenin信号通路对氧化应激损伤促进食管癌细胞凋亡的调控研究[J]. 广州医科大学学报,2019, 47(5): 1-4.
|
3 |
邓国栋. 氧化应激调控相关CUL3-KEAP1-NRF2轴在食管鳞癌中的作用及分子机制研究[D]. 北京: 北京协和医学院, 2021.
|
4 |
Ždralević M, Brand A, Di Ianni L, et al. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism[J]. J Biol Chem, 2018, 293(41): 15947-15961.
|
5 |
Wang X, Liu R, Zhu W, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis[J]. Nature, 2019, 571(7763):127-131.
|
6 |
DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect[J]. Nat Metab, 2020, 2(2): 127-129.
|
7 |
Martínez-Reyes I, Cardona LR, Kong H, et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth[J]. Nature, 2020, 585(7824):288-292.
|
8 |
Gong W, Xu J, Wang Y, et al. Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma[J]. Signal Transduct Target Ther, 2022, 7(1): 40.
|
9 |
Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC[J]. Nature, 1999, 399(6735): 483-487.
|
10 |
Perciavalle RM, Stewart DP, Koss B, et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration[J]. Nat Cell Biol, 2012, 14(6): 575-583.
|
11 |
Wuilleme-Toumi S, Robillard N, Gomez P, et al. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival[J]. Leukemia, 2005, 19(7): 1248-1252.
|
12 |
Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers[J]. Nature, 2010,463(7283): 899-905.
|
13 |
Andersen JL, Kornbluth S. Mcl-1 rescues a glitch in the matrix[J]. Nat Cell Biol, 2012, 14(6): 563-565.
|
14 |
Christofferson DE, Yuan J. Necroptosis as an alternative form of programmed cell death[J]. Curr Opin Cell Biol, 2010, 22(2): 263-268.
|
15 |
Sullivan LB, Gui DY, Vander Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy[J]. Nat Rev Cancer, 2016, 16(11): 680-693.
|
16 |
Dong CK, Masutomi K, Hahn WC. Telomerase: regulation, function and transformation[J]. Crit Rev Oncol Hematol, 2005, 54(2): 85-93.
|
17 |
Singhapol C, Pal D, Czapiewski R, et al. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis[J].PLoS One, 2013, 8(1): e52989.
|
18 |
Miwa S, Saretzki G. Telomerase and mTOR in the brain: the mitochondria connection[J]. Neural Regen Res, 2017, 12(3): 358-361.
|
19 |
Bernardini JP, Lazarou M, Dewson G. Parkin and mitophagy in cancer[J]. Oncogene, 2017, 36(10): 1315-1327.
|
20 |
O'Flanagan CH, O'Neill C. PINK1 signalling in cancer biology[J].Biochim Biophys Acta, 2014, 1846(2): 590-598.
|
21 |
Zhang H, Gao P, Fukuda R, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity[J]. Cancer Cell, 2007,11(5): 407-420.
|
22 |
Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation[J].Cell. 2010, 141(4): 656-667.
|
23 |
Yan C, Li TS. Dual role of mitophagy in cancer drug resistance[J].Anticancer Res, 2018, 38(2): 617-621.
|
24 |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an irondependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
|
25 |
Dixon SJ. Ferroptosis: bug or feature?[J]. Immunol Rev, 2017, 277(1):150-157.
|
26 |
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation[J].Trends Cell Biol, 2016, 26(3): 165-176.
|
27 |
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol,2017, 13(1): 91-98.
|
28 |
Yang WH, Huang Z, Wu J, et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer[J]. Mol Cancer Res, 2020, 18(1): 79-90.
|
29 |
Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296.
|
30 |
Jiang B, Zhao Y, Shi M, et al. DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma[J]. Dig Dis Sci, 2020, 65(7):1999-2008.
|
31 |
Zhang J, Wang N, Zhou Y, et al. Oridonin induces ferroptosis by inhibiting gamma-glutamyl cycle in TE1 cells[J]. Phytother Res, 2021,35(1): 494-503.
|
32 |
Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids[J]. Lipids, 1995, 30(4): 277-290.
|
33 |
Cao JY, Dixon SJ. Mechanisms of ferroptosis[J]. Cell Mol Life Sci,2016, 73(11-12): 2195-2209.
|
34 |
Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J].Proc Natl Acad Sci USA, 2016, 113(34): E4966-E4975.
|
35 |
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90.
|
36 |
Shah R, Shchepinov MS, Pratt DA. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis[J]. ACS Cent Sci, 2018, 4(3): 387-396.
|
37 |
Bai CY, Zhang JY, Shi TW, et al. Association between 5-lipoxygenase expression, and malignant behaviors and poor prognosis in esophageal squamous cell carcinoma[J]. Oncol Lett, 2018, 15(6): 9353-9360.
|
38 |
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331.
|
39 |
Eaton JK, Furst L, Ruberto RA, et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles[J]. Nat Chem Biol,2020, 16(5): 497-506.
|
40 |
Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503.
|
41 |
Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698.
|
42 |
Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019,575(7784): 688-692.
|
43 |
Hadian K. Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q cooperatively suppress ferroptosis[J]. Biochemistry, 2020, 59(5):637-638.
|
44 |
Dai E, Meng L, Kang R, et al. ESCRT-III-dependent membrane repair blocks ferroptosis[J]. Biochem Biophys Res Commun, 2020, 522(2):415-421.
|
45 |
Dai E, Zhang W, Cong D, et al. AIFM2 blocks ferroptosis independent of ubiquinol metabolism[J]. Biochem Biophys Res Commun, 2020,523(4): 966-971.
|