切换至 "中华医学电子期刊资源库"

中华胃食管反流病电子杂志 ›› 2023, Vol. 10 ›› Issue (03) : 151 -155. doi: 10.3877/cma.j.issn.2095-8765.2023.03.009

综述

氧化应激、NOD样受体蛋白3炎症小体及细胞焦亡在食管炎性损伤中的研究进展
阿布力克木·吾拉音1, 王永康2, 买买提·依斯热依力3, 吴朝阳4, 克力木·阿不都热依木3,()   
  1. 1. 830054 乌鲁木齐,新疆医科大学研究生学院;830001 乌鲁木齐,新疆维吾尔自治区人民医院急诊创伤外科
    2. 830054 乌鲁木齐,新疆医科大学研究生学院
    3. 830054 乌鲁木齐,新疆医科大学研究生学院;830001 乌鲁木齐,新疆维吾尔自治区人民医院微创、疝和腹壁外科
    4. 830001 乌鲁木齐,新疆维吾尔自治区人民医院急诊创伤外科
  • 收稿日期:2023-05-17 出版日期:2023-08-15
  • 通信作者: 克力木·阿不都热依木
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2022D01C107); 新疆维吾尔自治区自然科学基金(2021D01C148)

Research progress of oxidative stress, NLRP-3 inflammasome and pyroptosis in esophageal inflammatory injury

Wulayin Abulikemu·1, Yongkang Wang2, Yisireyili Maimaiti·3, Zhaoyang Wu4, Abudureyimu Kelimu·3,()   

  1. 1. Department of Xinjiang Medical University Graduate School of Medicine, Urumqi 830054, China;Department of Emergency Trauma Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China,
    2. Department of Xinjiang Medical University Graduate School of Medicine, Urumqi 830054, China
    3. Department of Xinjiang Medical University Graduate School of Medicine, Urumqi 830054, China;Department of Minimally invasive, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
    4. Department of Emergency Trauma Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China,
  • Received:2023-05-17 Published:2023-08-15
  • Corresponding author: Abudureyimu Kelimu·
引用本文:

阿布力克木·吾拉音, 王永康, 买买提·依斯热依力, 吴朝阳, 克力木·阿不都热依木. 氧化应激、NOD样受体蛋白3炎症小体及细胞焦亡在食管炎性损伤中的研究进展[J]. 中华胃食管反流病电子杂志, 2023, 10(03): 151-155.

Wulayin Abulikemu·, Yongkang Wang, Yisireyili Maimaiti·, Zhaoyang Wu, Abudureyimu Kelimu·. Research progress of oxidative stress, NLRP-3 inflammasome and pyroptosis in esophageal inflammatory injury[J]. Chinese Journal of Gastroesophageal Reflux Disease(Electronic Edition), 2023, 10(03): 151-155.

食管炎性损伤常由胃和十二指肠内容物逆行流入食管,诱发不适症状和食管黏膜病理病变。胃食管反流病(GERD)是一种由反复酸/胆汁酸刺激的食管慢性炎症性疾病可能会通过氧化损伤途径增加患癌症的风险。胃灼热和反流是GERD的典型症状,非典型表现的数量估计超过100种,包括非心脏性胸痛、支气管肺或耳鼻喉症状以及牙齿侵蚀。对这种化生转化发生的细胞和分子机制的理解仍然有限。GERD诱导食管组织活性氧氧化应激积累和慢性炎症局部浸润反应,炎症小体在该反应中发挥重要调控作用。细胞焦亡广泛参与消化系统各个脏器疾病的发生、发展,进一步阐述其在胃肠道疾病中的发生机制具有重要意义。本文主要综述了国内外氧化应激、NOD样受体蛋白3炎性小体以及细胞焦亡在食管氧化损伤和炎症发生发展中的机制研究现况作一综述,为其进一步临床诊疗及机制探索提供一定理论依据。

Inflammatory injury of the esophagus often results from retrograde flow of contents from the stomach and duodenum into the esophagus, inducing discomfort symptoms and pathological changes in the esophageal mucosa. Gastroesophageal reflux disease (GERD) is a chronic inflammatory disease of the esophagus that is stimulated by repeated acid/bile acids, which may increase the risk of cancer through oxidative damage pathways. Gastric burning and reflux are typical symptoms of GERD, with an estimated number of over 100 atypical manifestations, including non cardiac chest pain, bronchopulmonary or otolaryngological symptoms, and tooth erosion. The understanding of the cellular and molecular mechanisms underlying this transformation is still limited. GERD induces the accumulation of reactive oxygen species oxidative stress in esophageal tissue and chronic inflammatory local infiltration response, in which inflammasomes play an important regulatory role. Pyroptosis is widely involved in the occurrence and development of digestive system diseases. This article mainly reviews the current research status of the mechanism of oxidative stress, NOD like receptor protein inflammasome and pyroptosis in the occurrence and development of esophageal oxidative damage and inflammation at home and abroad, providing a theoretical basis for its further clinical diagnosis and treatment and mechanism exploration.

1
Maret-Ouda J, Markar SR, Lagergren J. Gastroesophageal reflux disease[J]. JAMA, 2020, 324(24):2565.
2
买买提·依斯热依力,吾布力卡斯木·吾拉木,李义亮,等. 心理应激诱导ROS产生在食管上皮细胞间隙增宽发生中的作用机制[J]. 医学研究杂志,2019,48(10): 74-79.
3
Sun H, Cai H, Fu Y, et al. The protection effect of resveratrol against radiation-induced inflammatory bowel disease via NLRP-3 inflammasome repression in mice[J]. Dose Response, 2020, 18(2):1559325820931292.
4
Fu Y, Wang Y, Du L, et al. Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation[J]. Int J Mol Sci, 2013, 14(7):14105-14118.
5
Hirokawa M, Takahashi K, Miyajima M, et al. Expression of genes encoding inflammasome sensor subunits in the duodenal and colonic mucosae of dogs with chronic enteropathy[J]. J Vet Med Sci, 2021, 83(7):1161-1166.
6
Longo L, Tonin Ferrari J, Rampelotto PH, et al. Gut dysbiosis and increased intestinal permeability drive microRNAs, NLRP-3 inflammasome and liver fibrosis in a nutritional model of non-alcoholic steatohepatitis in adult male sprague dawley rats[J]. Clin Exp Gastroenterol, 2020, 13:351-368.
7
曾梦优,仝巧云,周婷婷. NLRP3在自身免疫性疾病中的研究进展[J]. 胃肠病学,2015(7):442-444.
8
Hirokawa M, Takahashi K, Miyajima M, et al. Expression of genes encoding inflammasome sensor subunits in the duodenal and colonic mucosae of dogs with chronic enteropathy[J]. J Vet Med Sci, 2021, 83(7):1161-1166.
9
Iwakiri K, Fujiwara Y, Manabe N, et al. Evidence-based clinical practice guidelines for gastroesophageal reflux disease 2021[J]. J Gastroenterol, 2022, 57(4):267-285.
10
Kitay AM, Schneebacher MT, Schmitt A, et al. Modulations in extracellular calcium lead to H+-ATPase-dependent acid secretion: a clarification of PPI failure[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(1):G36-G42.
11
Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics[J]. Nat Med, 2015, 21(7):677-687.
12
Yang L, Lu X, Nossa CW, et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome[J]. Gastroenterology, 2009, 137(2):588-597.
13
Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation[J]. Nature, 2011, 469(7329):221-225.
14
Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production[J]? Nat Rev Immunol, 2010, 10(3):210-215.
15
Wang X, Wang S, Hu C, et al. A new pharmacological effect of levornidazole: inhibition of NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2015, 97(2):178-188.
16
Souza RF. Reflux esophagitis and its role in the pathogenesis of Barrett's metaplasia[J]. J Gastroenterol, 2017, 52(7):767-776.
17
Quante M, Bhagat G, Abrams JA, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia[J]. Cancer Cell, 2012, 21(1):36-51.
18
Nadatani Y, Huo X, Zhang X, et al. NOD-like receptor protein 3 inflammasome priming and activation in Barrett's epithelial cells[J]. Cell Mol Gastroenterol Hepatol, 2016, 2(4):439-453.
19
Budai MM, Varga A, Milesz S, et al. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages[J]. Mol Immunol, 2013, 56(4):471-479.
20
Gicquel T, Robert S, Loyer P, et al. IL-1β production is dependent on the activation of purinergic receptors and NLRP3 pathway in human macrophages[J]. FASEB J, 2015, 29(10):4162-4173.
21
Hartman KG, Bortner JD, Falk GW, et al. Modeling inflammation and oxidative stress in gastrointestinal disease development using novel organotypic culture systems[J]. Stem Cell Res Ther, 2013, 4 Suppl 1(Suppl 1):S5.
22
Kim YJ, Kim EH, Hahm KB. Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities[J]. J Gastroenterol Hepatol, 2012, 27(6):1004-1010.
23
Bhardwaj V, Gokulan RC, Horvat A, et al. Activation of NADPH oxidases leads to DNA damage in esophageal cells[J]. Sci Rep, 2017, 7(1):9956.
24
Ustaoglu A, Nguyen A, Spechler S, et al. Mucosal pathogenesis in gastro-esophageal reflux disease[J]. Neurogastroenterol Motil, 2020, 32(12):e14022.
25
Peng D, Zaika A, Que J, et al. The antioxidant response in Barrett's tumorigenesis: a double-edged sword[J]. Redox Biol, 2021, 41:101894.
26
Poehlmann A, Kuester D, Malfertheiner P, et al. Inflammation and Barrett's carcinogenesis[J]. Pathol Res Pract, 2012, 208(5):269-280.
27
Zhao Y, Ma T, Zhang Z, et al. Resolvin D1 attenuates acid-induced DNA damage in esophageal epithelial cells and rat models of acid reflux[J]. Eur J Pharmacol, 2021, 912:174571.
28
Feagins LA, Zhang HY, Zhang X, et al. Mechanisms of oxidant production in esophageal squamous cell and Barrett's cell lines[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(2):G411-G417.
29
Tutar E, Ertem D, Unluguzel G, et al. Reactive oxygen species and chemokines: are they elevated in the esophageal mucosa of children with gastroesophageal reflux disease?[J]. World J Gastroenterol, 2008, 14(20):3218-3223.
30
Nadatani Y, Huo X, Zhang X, et al. NOD-Like receptor protein 3 inflammasome priming and activation in Barrett's epithelial cells[J]. Cell Mol Gastroenterol Hepatol, 2016, 2(4):439-453.
31
Bhardwaj V, Horvat A, Korolkova O, et al. Prevention of DNA damage in Barrett's esophageal cells exposed to acidic bile salts[J]. Carcinogenesis, 2016, 37(12): 1161-1169.
32
Peng D, Lu H, Zhu S, et al.NRF2 antioxidant response protects against acidic bile salts-induced oxidative stress and DNA damage in esophageal cells[J]. Cancer Lett, 2019, 458:46-55.
33
Bhardwaj V, Gokulan RC, Horvat A, et al. Activation of NADPH oxidases leads to DNA damage in esophageal cells[J]. Sci Rep, 2017, 7(1):9956.
34
买买提·依斯热依力,吾布力卡斯木·吾拉木,李义亮,等. 心理应激诱导ROS产生在食管上皮细胞间隙增宽发生中的作用机制[J]. 医学研究杂志,2019, 48(10):74-79.
35
Olyaee M, Sontag S, Salman W, et al. Mucosal reactive oxygen species production in oesophagitis and Barrett's oesophagus[J]. Gut, 1995, 37(2):168-173.
36
Jiménez P, Piazuelo E, Sánchez MT, et al.Free radicals and antioxidant systems in reflux esophagitis and Barrett's esophagus[J]. World J Gastroenterol, 2005, 11(18): 2697-2703.
37
Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer[J]. Biomed Pharmacother, 2020, 121:109595.
38
Liu B, He R, Zhang L, et al. Inflammatory caspases drive pyroptosis in acute lung injury[J]. Front Pharmacol, 2021, 12:631256.
39
刘思雨,唐艳萍,刘磊, 等.基于蛋白组学和NCBI数据库探究反流性食管炎及细胞焦亡调控基因[J].中华实验外科杂志,2022,39(4):676-678.
40
杨羽依,刘秀萍. Gasdermin E诱导细胞焦亡的研究进展[J]. 中华病理学杂志, 2021, 50(4):421-424.
41
Wulamu W, Yisireyili M, Aili A, et al. Chronic stress augments esophageal inflammation, and alters the expression of transient receptor potential vanilloid 1 and proteaseactivated receptor 2 in a murine model[J]. Mol Med Rep, 2019, 19(6):5386-5396.
42
Song S, Guha S, Liu K, et al. COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett's oesophagus and oesophageal adenocarcinoma[J]. Gut, 2007, 56(11): 1512-21.
43
Zavala-Solares MR, Fonseca-Camarillo G, Valdovinos M, et al. Gene expression profiling of inflammatory cytokines in esophageal biopsies of different phenotypes of gastroesophageal reflux disease: a cross-sectional study[J]. BMC Gastroenterol, 2021, 21(1):201.
[1] 周腾达, 陈庆丽, 杨雪林, 陈琪, 徐杰丰, 周光居, 张茂. 西维来司钠对猪心肺复苏后肾肠损伤作用的研究[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 441-447.
[2] 屈少华, 胡晔东, 赵修浩, 李文娜, 向鹏程, 肖子添, 马启明, 韩俊毅. 伴有无效食管动力的胃食管反流病用药和手术治疗的效果对比[J]. 中华普通外科学文献(电子版), 2024, 18(01): 23-28.
[3] 钟轼, 李斌飞, 温君琳, 古晨, 廖小卒. 右美托咪定缓解神经病理性疼痛作用机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(03): 237-240.
[4] 梁艳, 胡志伟, 刘健男, 宋庆, 陈冬, 田书瑞, 李冉, 毛建新. 高分辨率食管测压在胃食管反流病食管运动功能评价中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(01): 89-92.
[5] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[6] 贾卓奇, 周维茹, 张勇, 张广健, 付军科. 达·芬奇机器人与腹腔镜食管裂孔疝修补术的对比研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 410-414.
[7] 余玲玲, 彭倪, 刘小虎, 刘聪慧. 蟛蜞菊内酯上调miR-190表达抑制高糖诱导的人视网膜血管内皮细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 339-345.
[8] 裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.
[9] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[10] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 王丽丽, 张春霞, 申磊, 吴立娜, 潘青, 冯雪. 吗替麦考酚酯联合雷公藤多苷及糖皮质激素治疗对IgA肾病患者肾功能、炎症因子和氧化应激的影响[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1285-1290.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 龚小燕, 陈庆伟. 高尿酸血症促进冠状动脉钙化的研究进展[J]. 中华老年病研究电子杂志, 2023, 10(04): 47-49.
[15] 中国医师协会外科医师分会胃食管反流病专业学组, 新疆维吾尔自治区普外微创研究所, 新疆胃食管反流病与减重代谢外科临床医学研究中心. 成人机器人辅助食管裂孔疝修补抗反流手术中国专家共识(2023版)[J]. 中华胃食管反流病电子杂志, 2023, 10(03): 117-120.
阅读次数
全文


摘要