切换至 "中华医学电子期刊资源库"

中华胃食管反流病电子杂志 ›› 2024, Vol. 11 ›› Issue (03) : 130 -136. doi: 10.3877/cma.j.issn.2095-8765.2024.03.004

论著

构建胃食管反流病患者发生心房颤动的临床预测模型
文明1, 张丽1, 谢芳1, 艾克拜尔·艾力1, 克力木·阿不都热依木1,()   
  1. 1.830001 乌鲁木齐,新疆维吾尔自治区人民医院心血管内科
  • 收稿日期:2024-03-24 出版日期:2024-08-15
  • 通信作者: 克力木·阿不都热依木

Establishment of clinical model for predicting the risk of atrial fibrillation with gastroesophageal reflux disease

Ming Wen1, Li Zhang1, Fang Xie1, Aili Aikebaier1, Abudureyimu Kelimu,1()   

  1. 1.Department of Cardiology,People’s Hospital of Xinjiang Uygur Autonomous Region,Urumqi 830001,China
  • Received:2024-03-24 Published:2024-08-15
  • Corresponding author: Abudureyimu Kelimu
引用本文:

文明, 张丽, 谢芳, 艾克拜尔·艾力, 克力木·阿不都热依木. 构建胃食管反流病患者发生心房颤动的临床预测模型[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(03): 130-136.

Ming Wen, Li Zhang, Fang Xie, Aili Aikebaier, Abudureyimu Kelimu. Establishment of clinical model for predicting the risk of atrial fibrillation with gastroesophageal reflux disease[J/OL]. Chinese Journal of Gastroesophageal Reflux Disease(Electronic Edition), 2024, 11(03): 130-136.

目的

探究影响胃食管反流病(GERD)患者发生心房颤动的因素,并建立预测GERD患者发生心房颤动风险的临床模型。

方法

收集2015 年3 月至2017 年12 月新疆维吾尔自治区人民医院268 例明确诊断为GERD 患者的资料,根据病情将患者分为GERD 合并心房颤动组和GERD 组,运用单因素及多因素Logistic 回归分析明确GERD 患者发生心房颤动的影响因素,运用nomogram方法建立预测GERD 患者患心房颤动的临床预测模型,并根据预测模型建立评分量表,之后以参与患者的75%为建模组其余25%患者为验证组对所见模型进行外部验证,同时绘制受试者工作特征(ROC)曲线,计算ROC 曲线下面积(AUC),并应用决策曲线分析法(DCA)进一步对所建量表进行内部验证。

结果

在268 例GERD 患者中,有35 例合并心房颤动,运用单因素及多因素Logistic回归模型分析相关指标对GERD 患者发生心房颤动的影响,分析得出年龄、体质量指数(BMI)、患有冠心病或心力衰竭、患有睡眠呼吸暂停等可明显影响GERD 发生心房颤动(P<0.05),而性别、民族、糖尿病、吸烟及高血压的影响并不显著(P>0.05)。再进行趋势性检验时发现,随着年龄及BMI 逐渐升高,患者发生心房颤动的风险是逐渐增加的(P<0.05)。随后建立了临床预测模型,运用内部验证联合外部验证,建模组患者的AUC 是0.6858,而外部验证组的AUC 是0.6473,2 组无明显的统计学差异(P>0.05),该模型的C 指数为0.7041。

结论

年龄、BMI、患有冠心病或心力衰竭、患有睡眠呼吸暂停等可明显影响GERD 发生心房颤动,同时我们初步构建了切实有效的临床模型去预测GERD 患者发生心房颤动。

Objective

To explore the influencing factors of atrial fibrillation in patients with gastroesophageal reflux disease (GERD), and to establish a clinical model to predict the risk of atrial fibrillation in patients with GERD.

Methods

We collected the data of 268 patients diagnosed with GERD from 2015 to 2017 in the People's Hospital of Xinjiang Uygur Autonomous Region. According to the patients' condition, we divided them into GERD with atrial fibrillation group and GERD group. The influencing factors of atrial fibrillation in patients with GERD were identified by univariate regression and multivariate regression. A clinical prediction model for predicting atrial fibrillation in GERD patients was established by nomogram method, and a scoring scale was established according to the prediction model.After that, 75% of the participating patients were used as the modeling group and the remaining 25% as the verification group, the observed model was verified externally. Meanwhile, ROC curve was drawn, AUC was calculated, and DCA curve was drawn to further verify the built scale internally.

Results

Among 268 patients with GERD, 35 patients were complicated with atrial fibrillation. Univariate and multivariate logistic regression models were used to analyze the influence of related indexes on atrial fibrillation in patients with GERD. It was found that age, BMI, coronary heart disease or heart failure, and sleep apnea could significantly affect atrial fibrillation in GERD (P<0.05), but gender, nationality, diabetes, smoking and hypertension had no significant influence (P>). Further trend test showed that the risk of atrial fibrillation increased gradually with the increase of age and BMI (P for trend<0.05). Then a clinical prediction model was established. The AUC of the patients in the modeling group was 0.6858, while that in the external verification group was 0.6473. There was no significant difference between the two groups (P>0.05), and the C index of the model was 0.7041.

Conclusion

Age, BMI, coronary heart disease or heart failure, sleep apnea, etc. can significantly affect the occurrence of atrial fibrillation in GERD. At the same time, we initially constructed a practical and effective clinical model to predict atrial fibrillation in patients with GERD.

表1 268 例GERD 患者的基线资料
图1 影响GERD 患者发生AF 的相关指标 注:GERD 为胃食管反流病;BMI 为体质量指数
图2 nomogram 法制作临床预测模型的列线图 注:BMI 为体质量指数
表2 多因素分析相关指标对患心房颤动风险的影响
表3 GERD 患者患AF 风险预测的评分系统
图3 内部及外部验证组的受试者工作特征曲线
1
Ness-Jensen E, Lindam A, Lagergren J, et al. Changes in prevalence,incidence and spontaneous loss of gastro-oesophageal reflux symptoms: a prospective population-based cohort study, the HUNT study [J]. Gut, 2012, 61(10): 1390-1397.
2
El-Serag HB, Sweet S, Winchester CC, et al. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review [J]. Gut, 2014, 63(6): 871-880.
3
Maret-Ouda J, Markar SR, Lagergren J. Gastroesophageal reflux disease: a review [J]. JAMA, 2020, 324(24): 2536-2547.
4
Niebisch S, Fleming FJ, Galey KM, et al. Perioperative risk of laparoscopic fundoplication: safer than previously reported-analysis of the American College of Surgeons National Surgical Quality Improvement Program 2005 to 2009 [J]. J Am Coll Surg, 2012, 215(1):61-68; discussion 68-69.
5
Funk LM, Kanji A, Scott Melvin W, et al. Elective antireflux surgery in the US: an analysis of national trends in utilization and inpatient outcomes from 2005 to 2010 [J]. Surg Endosc, 2014, 28(5):1712-1719.
6
Maret-Ouda J, Brusselaers N, Lagergren J. What is the most effective treatment for severe gastro-oesophageal reflux disease? [J]. BMJ,2015, 350: h3169.
7
Huang TC, Lo LW, Yamada S, et al. Gastroesophageal reflux disease and atrial fibrillation: insight from autonomic cardiogastric neural interaction [J]. J Cardiovasc Electrophysiol, 2019, 30(11): 2262-2270.
8
Linz D, Hohl M, Vollmar J, et al. Atrial fibrillation and gastroesophageal reflux disease: the cardiogastric interaction [J].Europace, 2017, 19(1): 16-20.
9
Velagapudi P, Turagam MK, Leal MA, et al. Atrial fibrillation and acid reflux disease [J]. Clinical Cardiology, 2012, 35(3): 180-186.
10
Jervell O, Lødøen O. The gastrocardiac syndrome [J]. Acta Medica Scandinavica, 1952, 142(S266): 595-599.
11
Swanson DR. Atrial fibrillation in athletes: implicit literature-based connections suggest that overtraining and subsequent inflammation may be a contributory mechanism [J]. Med Hypotheses, 2006, 66(6):1085-1092.
12
Coumel P. Paroxysmal atrial fibrillation: a disorder of autonomic tone?[J]. Eur Heart J, 1994, 15 Suppl A: 9-16.
13
周祁娜, 侯月梅. 交感神经活动与心房颤动相关性研究进展 [J]. 中国心脏起搏与心电生理杂志, 2011, 25(3): 3.
14
Engelmann MD, Svendsen JH. Inflammation in the genesis and perpetuation of atrial fibrillation [J]. Eur Heart J, 2005, 26(20):2083-2092.
15
Chung MK, Martin DO, Sprecher D, et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation [J]. Circulation, 2001, 104(24): 2886-2891.
16
Aviles RJ, Martin DO, Appersonhansen C, et al. Inflammation as a risk factor for atrial fibrillation [J]. Circulation, 2003, 108(24): 3006-3010.
17
Tong L, Li L, Korantzopoulos P, et al. Meta-analysis of association between C-reactive protein and immediate success of electrical cardioversion in persistent atrial fibrillation [J].Am J Cardiol, 2008,101(12):1749-1752.
18
Maret-Ouda J, Santoni G, Xie SH, et al. Objectively confirmed gastroesophageal reflux disease and risk of atrial fibrillation: a population-based cohort study in Sweden [J]. Eur J Gastroenterol Hepatol, 2022, 34(11): 1116-1120.
19
Hurst JW, Paulk EA, Proctor HD, et al. Management of patients with atrial fibrillation [J]. Am J Med, 1964, 37(5): 728-741.
20
Mohamed A, Crespo DO, Kaur G, et al. Gastroesophageal reflux and its association with atrial fibrillation: a traditional review [J]. Cureus,2020, 12(9):e10387.
21
Hoshino N, Hida K, Sakai Y, et al. Nomogram for predicting anastomotic leakage after low anterior resection for rectal cancer [J].Int J Colorectal Dis, 2018, 33(4): 411-418.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[3] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[4] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[5] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[6] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[7] 李海云, 赵敏娴, 申英末, 杨慧琪. 胃底折叠术预防食管裂孔疝术后并发症的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 485-490.
[8] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[9] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[10] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[11] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[12] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[13] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 李文哲, 王毅, 崔建, 郑启航, 王靖彦, 于湘友. 新疆维吾尔自治区重症患者急性肾功能异常的危险因素分析[J/OL]. 中华卫生应急电子杂志, 2024, 10(05): 269-276.
阅读次数
全文


摘要