1 |
Maret-Ouda J, Markar SR, Lagergren J. Gastroesophageal reflux disease[J]. JAMA, 2020, 324(24):2565.
|
2 |
买买提·依斯热依力,吾布力卡斯木·吾拉木,李义亮,等. 心理应激诱导ROS产生在食管上皮细胞间隙增宽发生中的作用机制[J]. 医学研究杂志,2019,48(10): 74-79.
|
3 |
Sun H, Cai H, Fu Y, et al. The protection effect of resveratrol against radiation-induced inflammatory bowel disease via NLRP-3 inflammasome repression in mice[J]. Dose Response, 2020, 18(2):1559325820931292.
|
4 |
Fu Y, Wang Y, Du L, et al. Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation[J]. Int J Mol Sci, 2013, 14(7):14105-14118.
|
5 |
Hirokawa M, Takahashi K, Miyajima M, et al. Expression of genes encoding inflammasome sensor subunits in the duodenal and colonic mucosae of dogs with chronic enteropathy[J]. J Vet Med Sci, 2021, 83(7):1161-1166.
|
6 |
Longo L, Tonin Ferrari J, Rampelotto PH, et al. Gut dysbiosis and increased intestinal permeability drive microRNAs, NLRP-3 inflammasome and liver fibrosis in a nutritional model of non-alcoholic steatohepatitis in adult male sprague dawley rats[J]. Clin Exp Gastroenterol, 2020, 13:351-368.
|
7 |
曾梦优,仝巧云,周婷婷. NLRP3在自身免疫性疾病中的研究进展[J]. 胃肠病学,2015(7):442-444.
|
8 |
Hirokawa M, Takahashi K, Miyajima M, et al. Expression of genes encoding inflammasome sensor subunits in the duodenal and colonic mucosae of dogs with chronic enteropathy[J]. J Vet Med Sci, 2021, 83(7):1161-1166.
|
9 |
Iwakiri K, Fujiwara Y, Manabe N, et al. Evidence-based clinical practice guidelines for gastroesophageal reflux disease 2021[J]. J Gastroenterol, 2022, 57(4):267-285.
|
10 |
Kitay AM, Schneebacher MT, Schmitt A, et al. Modulations in extracellular calcium lead to H+-ATPase-dependent acid secretion: a clarification of PPI failure[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(1):G36-G42.
|
11 |
Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics[J]. Nat Med, 2015, 21(7):677-687.
|
12 |
Yang L, Lu X, Nossa CW, et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome[J]. Gastroenterology, 2009, 137(2):588-597.
|
13 |
Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation[J]. Nature, 2011, 469(7329):221-225.
|
14 |
Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production[J]? Nat Rev Immunol, 2010, 10(3):210-215.
|
15 |
Wang X, Wang S, Hu C, et al. A new pharmacological effect of levornidazole: inhibition of NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2015, 97(2):178-188.
|
16 |
Souza RF. Reflux esophagitis and its role in the pathogenesis of Barrett's metaplasia[J]. J Gastroenterol, 2017, 52(7):767-776.
|
17 |
Quante M, Bhagat G, Abrams JA, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia[J]. Cancer Cell, 2012, 21(1):36-51.
|
18 |
Nadatani Y, Huo X, Zhang X, et al. NOD-like receptor protein 3 inflammasome priming and activation in Barrett's epithelial cells[J]. Cell Mol Gastroenterol Hepatol, 2016, 2(4):439-453.
|
19 |
Budai MM, Varga A, Milesz S, et al. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages[J]. Mol Immunol, 2013, 56(4):471-479.
|
20 |
Gicquel T, Robert S, Loyer P, et al. IL-1β production is dependent on the activation of purinergic receptors and NLRP3 pathway in human macrophages[J]. FASEB J, 2015, 29(10):4162-4173.
|
21 |
Hartman KG, Bortner JD, Falk GW, et al. Modeling inflammation and oxidative stress in gastrointestinal disease development using novel organotypic culture systems[J]. Stem Cell Res Ther, 2013, 4 Suppl 1(Suppl 1):S5.
|
22 |
Kim YJ, Kim EH, Hahm KB. Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities[J]. J Gastroenterol Hepatol, 2012, 27(6):1004-1010.
|
23 |
Bhardwaj V, Gokulan RC, Horvat A, et al. Activation of NADPH oxidases leads to DNA damage in esophageal cells[J]. Sci Rep, 2017, 7(1):9956.
|
24 |
Ustaoglu A, Nguyen A, Spechler S, et al. Mucosal pathogenesis in gastro-esophageal reflux disease[J]. Neurogastroenterol Motil, 2020, 32(12):e14022.
|
25 |
Peng D, Zaika A, Que J, et al. The antioxidant response in Barrett's tumorigenesis: a double-edged sword[J]. Redox Biol, 2021, 41:101894.
|
26 |
Poehlmann A, Kuester D, Malfertheiner P, et al. Inflammation and Barrett's carcinogenesis[J]. Pathol Res Pract, 2012, 208(5):269-280.
|
27 |
Zhao Y, Ma T, Zhang Z, et al. Resolvin D1 attenuates acid-induced DNA damage in esophageal epithelial cells and rat models of acid reflux[J]. Eur J Pharmacol, 2021, 912:174571.
|
28 |
Feagins LA, Zhang HY, Zhang X, et al. Mechanisms of oxidant production in esophageal squamous cell and Barrett's cell lines[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(2):G411-G417.
|
29 |
Tutar E, Ertem D, Unluguzel G, et al. Reactive oxygen species and chemokines: are they elevated in the esophageal mucosa of children with gastroesophageal reflux disease?[J]. World J Gastroenterol, 2008, 14(20):3218-3223.
|
30 |
Nadatani Y, Huo X, Zhang X, et al. NOD-Like receptor protein 3 inflammasome priming and activation in Barrett's epithelial cells[J]. Cell Mol Gastroenterol Hepatol, 2016, 2(4):439-453.
|
31 |
Bhardwaj V, Horvat A, Korolkova O, et al. Prevention of DNA damage in Barrett's esophageal cells exposed to acidic bile salts[J]. Carcinogenesis, 2016, 37(12): 1161-1169.
|
32 |
Peng D, Lu H, Zhu S, et al.NRF2 antioxidant response protects against acidic bile salts-induced oxidative stress and DNA damage in esophageal cells[J]. Cancer Lett, 2019, 458:46-55.
|
33 |
Bhardwaj V, Gokulan RC, Horvat A, et al. Activation of NADPH oxidases leads to DNA damage in esophageal cells[J]. Sci Rep, 2017, 7(1):9956.
|
34 |
买买提·依斯热依力,吾布力卡斯木·吾拉木,李义亮,等. 心理应激诱导ROS产生在食管上皮细胞间隙增宽发生中的作用机制[J]. 医学研究杂志,2019, 48(10):74-79.
|
35 |
Olyaee M, Sontag S, Salman W, et al. Mucosal reactive oxygen species production in oesophagitis and Barrett's oesophagus[J]. Gut, 1995, 37(2):168-173.
|
36 |
Jiménez P, Piazuelo E, Sánchez MT, et al.Free radicals and antioxidant systems in reflux esophagitis and Barrett's esophagus[J]. World J Gastroenterol, 2005, 11(18): 2697-2703.
|
37 |
Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer[J]. Biomed Pharmacother, 2020, 121:109595.
|
38 |
Liu B, He R, Zhang L, et al. Inflammatory caspases drive pyroptosis in acute lung injury[J]. Front Pharmacol, 2021, 12:631256.
|
39 |
刘思雨,唐艳萍,刘磊, 等.基于蛋白组学和NCBI数据库探究反流性食管炎及细胞焦亡调控基因[J].中华实验外科杂志,2022,39(4):676-678.
|
40 |
杨羽依,刘秀萍. Gasdermin E诱导细胞焦亡的研究进展[J]. 中华病理学杂志, 2021, 50(4):421-424.
|
41 |
Wulamu W, Yisireyili M, Aili A, et al. Chronic stress augments esophageal inflammation, and alters the expression of transient receptor potential vanilloid 1 and proteaseactivated receptor 2 in a murine model[J]. Mol Med Rep, 2019, 19(6):5386-5396.
|
42 |
Song S, Guha S, Liu K, et al. COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett's oesophagus and oesophageal adenocarcinoma[J]. Gut, 2007, 56(11): 1512-21.
|
43 |
Zavala-Solares MR, Fonseca-Camarillo G, Valdovinos M, et al. Gene expression profiling of inflammatory cytokines in esophageal biopsies of different phenotypes of gastroesophageal reflux disease: a cross-sectional study[J]. BMC Gastroenterol, 2021, 21(1):201.
|